DERS TANITIM ve UYGULAMA BİLGİLERİ

Dersin Adı Kodu Yarıyıl T+U+L (saat/hafta) Türü (Z / S) Yerel Kredi AKTS
Veri Madenciliği CE 514 Bahar 03+00+00 Zorunlu 3 8.0
Akademik Birim:
Öğrenim Türü:
Ön Koşullar İstatistik
Öğrenim Dili: İngilizce
Dersin Düzeyi: Yüksek Lisans
Dersin Koordinatörü: Taner ARSAN
Dersin Amacı: Veri Madenciliğinin amacı veri yığınından faydalı bilgiyi bulup çıkartmaktır ve keşfedilen bilgiyi kullanarak mevcut durumu açıklamaya yardımcı olmak ve gelecekteki oluşumları tahmin etmektir.
Dersin İçeriği: Otomatik veri analizi ve organizasyonel karar verme proseslerine destek verme amacıyla iç ve dış kaynaklardan bilgi çıkarma. Farklı uygulamaları araştırma, metodolojiler, teknikler ve modeller. Sınıflandırma, Karar Ağaçları, Birliktelik Kuralları, Kümeleme. Bu ders gerçek hayattan alınan geniş veri setleriyle , Weka Veri Madenciliği yazılımı kullanılarak vaka analizi yapma ile sonlanır.
Dersin Öğrenme Çıktıları (ÖÇ):
  • 1- Veri yığınından faydalı bilgiyi bulup çıkarma becerisi kazandıracaktır.
  • 2- Veri yığınını analiz etme, temizleme ve birleştirme becerisi kazandıracaktır.
  • 3- Veri indirgeme bilgi ve becerisi kazandırmak
  • 4- Eğiticili ve eğiticisiz yöntemler ile sınıflama ve kümeleme bilgi ve becerisi kazandırmak
  • 5- Birliktelik kurallarını çıkartma ve değerlendirme bilgi ve becerisi kazandırmak
Dersin Öğrenme Yöntem ve Teknikleri Sınıfta yüzyüze yapılan dersler, ödevler, proje, vize ve final sınavları


HAFTALIK PROGRAM

HaftaKonularÖn Hazırlık
1 Veri Madenciliğine Giriş Ders Kitabı 2- Bölüm 1
2 Veri Madenciliği Kavramları ve Veri Önişleme Ders Kitabı 1-Bölüm 1 ve Bölüm 2
3 Veri İndirgeme ve Ayrıklaştırma-I Ders Kitabı 1- Bölüm 3
4 Veri İndirgeme ve Ayrıklaştırma-II Ders Kitabı 1- Bölüm 3
5 Karar Ağaçları ve Karar Kuralları Ders Kitabı 1- Bölüm 7
6 İstatistiksel Metodlarla Sınıflama- Naive Bayes Sınıflayıcı Ders Kitabı 1- Bölüm 5
7 Sınıflama ve Kümeleme Yöntemlerinin Değerlendirilmesi, Sınıf Karışıklık Matrisi Ders Kitabı 1- Bölüm 4
8 Yıliçi Sınavı Sınava Hazırlık
9 Kümeleme ve Benzerlik Ölçüleri Ders Kitabı 1- Bölüm 6
10 Kümeleme Metodları- K-Ortalamalar Algoritması Ders Kitabı 1- Bölüm 6
11 Kümeleme Metodları- Hiyerarşik Kümeleme Ders Kitabı 1- Bölüm 8
12 Birliktelik Kuralları, Market Sepeti Analizi, Apriori Algoritması Ders Kitabı 2- Bölüm 3
13 Veri Ambarları veÇok boyutlu Veri için OLAP İşlemleri Ders Kitabı 2- Bölüm 11
14 Proje Sunumları Proje Sunumları


ZORUNLU ve ÖNERİLEN OKUMALAR

1: Data Mining ? Concepts, Models, Methods and Algorithms, Mehmed Kantardzic, ISBN:0-471-22852-2: Data Mining , J. Han ? M. Kamber, Morgan-Kaufman, Academic Press, 2001, ISBN: 1-55860-901-6


DİĞER KAYNAKLAR



DEĞERLENDİRME SİSTEMİ

Yarıyıl İçi ÇalışmalarıSayıKatkı Payı (%)
Katılım - -
Laboratuvar - -
Uygulama - -
Arazi Çalışması - -
Proje 1 20
Ödev 2 15
Sunum/Jüri - -
Derse Özgü Staj - -
Diğer Uygulamalar (seminer, stüdyo kritiği, workshop vb.) - -
Dersle İlgili Sınıf Dışı Etkinlikler (okuma, bireysel çalışma vb.) - -
Ara Sınavlar/Sözlü Sınavlar/Kısa Sınavlar 1 25
Final Sınavı 1 40
Total: 5 100


İŞ YÜKÜ HESAPLAMASI

EtkinliklerSayısıSüresi (saat)Toplam İş Yükü (saat)
Ders Saati14342
Laboratuvar000
Uygulama000
Arazi Çalışması000
Proje15050
Ödev23060
Sunum/Jüriye Hazırlık000
Derse Özgü Staj000
Diğer Uygulamalara Hazırlık000
Dersle İlgili Sınıf Dışı Etkinlikler14456
Ara Sınavlar/Sözlü Sınavlar/Kısa Sınavlar11515
Final Sınavı12525
Toplam İş Yükü (saat):248


PROGRAM YETERLİLİKLERİ (PY) ve ÖĞRENME ÇIKTILARI (ÖÇ) İLİŞKİSİ

# PY1 PY2 PY3 PY4 PY5 PY6 PY7 PY8 PY9
OC1                  
OC2                  
OC3                  
OC4                  
OC5                  
Dersin Adı Kodu Yarıyıl T+U+L (saat/hafta) Türü (Z / S) Yerel Kredi AKTS
Veri Madenciliği CE 514 Bahar 03+00+00 Zorunlu 3 8.0
Akademik Birim:
Öğrenim Türü:
Ön Koşullar İstatistik
Öğrenim Dili: İngilizce
Dersin Düzeyi: Yüksek Lisans
Dersin Koordinatörü: Taner ARSAN
Dersin Amacı: Veri Madenciliğinin amacı veri yığınından faydalı bilgiyi bulup çıkartmaktır ve keşfedilen bilgiyi kullanarak mevcut durumu açıklamaya yardımcı olmak ve gelecekteki oluşumları tahmin etmektir.
Dersin İçeriği: Otomatik veri analizi ve organizasyonel karar verme proseslerine destek verme amacıyla iç ve dış kaynaklardan bilgi çıkarma. Farklı uygulamaları araştırma, metodolojiler, teknikler ve modeller. Sınıflandırma, Karar Ağaçları, Birliktelik Kuralları, Kümeleme. Bu ders gerçek hayattan alınan geniş veri setleriyle , Weka Veri Madenciliği yazılımı kullanılarak vaka analizi yapma ile sonlanır.
Dersin Öğrenme Çıktıları (ÖÇ):
  • 1- Veri yığınından faydalı bilgiyi bulup çıkarma becerisi kazandıracaktır.
  • 2- Veri yığınını analiz etme, temizleme ve birleştirme becerisi kazandıracaktır.
  • 3- Veri indirgeme bilgi ve becerisi kazandırmak
  • 4- Eğiticili ve eğiticisiz yöntemler ile sınıflama ve kümeleme bilgi ve becerisi kazandırmak
  • 5- Birliktelik kurallarını çıkartma ve değerlendirme bilgi ve becerisi kazandırmak
Dersin Öğrenme Yöntem ve Teknikleri Sınıfta yüzyüze yapılan dersler, ödevler, proje, vize ve final sınavları


HAFTALIK PROGRAM

HaftaKonularÖn Hazırlık
1 Veri Madenciliğine Giriş Ders Kitabı 2- Bölüm 1
2 Veri Madenciliği Kavramları ve Veri Önişleme Ders Kitabı 1-Bölüm 1 ve Bölüm 2
3 Veri İndirgeme ve Ayrıklaştırma-I Ders Kitabı 1- Bölüm 3
4 Veri İndirgeme ve Ayrıklaştırma-II Ders Kitabı 1- Bölüm 3
5 Karar Ağaçları ve Karar Kuralları Ders Kitabı 1- Bölüm 7
6 İstatistiksel Metodlarla Sınıflama- Naive Bayes Sınıflayıcı Ders Kitabı 1- Bölüm 5
7 Sınıflama ve Kümeleme Yöntemlerinin Değerlendirilmesi, Sınıf Karışıklık Matrisi Ders Kitabı 1- Bölüm 4
8 Yıliçi Sınavı Sınava Hazırlık
9 Kümeleme ve Benzerlik Ölçüleri Ders Kitabı 1- Bölüm 6
10 Kümeleme Metodları- K-Ortalamalar Algoritması Ders Kitabı 1- Bölüm 6
11 Kümeleme Metodları- Hiyerarşik Kümeleme Ders Kitabı 1- Bölüm 8
12 Birliktelik Kuralları, Market Sepeti Analizi, Apriori Algoritması Ders Kitabı 2- Bölüm 3
13 Veri Ambarları veÇok boyutlu Veri için OLAP İşlemleri Ders Kitabı 2- Bölüm 11
14 Proje Sunumları Proje Sunumları


ZORUNLU ve ÖNERİLEN OKUMALAR

1: Data Mining ? Concepts, Models, Methods and Algorithms, Mehmed Kantardzic, ISBN:0-471-22852-2: Data Mining , J. Han ? M. Kamber, Morgan-Kaufman, Academic Press, 2001, ISBN: 1-55860-901-6


DİĞER KAYNAKLAR



DEĞERLENDİRME SİSTEMİ

Yarıyıl İçi ÇalışmalarıSayıKatkı Payı (%)
Katılım - -
Laboratuvar - -
Uygulama - -
Arazi Çalışması - -
Proje 1 20
Ödev 2 15
Sunum/Jüri - -
Derse Özgü Staj - -
Diğer Uygulamalar (seminer, stüdyo kritiği, workshop vb.) - -
Dersle İlgili Sınıf Dışı Etkinlikler (okuma, bireysel çalışma vb.) - -
Ara Sınavlar/Sözlü Sınavlar/Kısa Sınavlar 1 25
Final Sınavı 1 40
Total: 5 100


İŞ YÜKÜ HESAPLAMASI

EtkinliklerSayısıSüresi (saat)Toplam İş Yükü (saat)
Ders Saati14342
Laboratuvar000
Uygulama000
Arazi Çalışması000
Proje15050
Ödev23060
Sunum/Jüriye Hazırlık000
Derse Özgü Staj000
Diğer Uygulamalara Hazırlık000
Dersle İlgili Sınıf Dışı Etkinlikler14456
Ara Sınavlar/Sözlü Sınavlar/Kısa Sınavlar11515
Final Sınavı12525
Toplam İş Yükü (saat):248


PROGRAM YETERLİLİKLERİ (PY) ve ÖĞRENME ÇIKTILARI (ÖÇ) İLİŞKİSİ

# PY1 PY2 PY3 PY4 PY5 PY6 PY7 PY8 PY9
OC1                  
OC2                  
OC3                  
OC4                  
OC5