DERS TANITIM ve UYGULAMA BİLGİLERİ

Dersin Adı Kodu Yarıyıl T+U+L (saat/hafta) Türü (Z / S) Yerel Kredi AKTS
İleri Organik Sentez MSN 514 Güz 03+00+00 Seçmeli 3 7.5
Akademik Birim: Lisansüstü Eğitim Enstitüsü Malzeme Bilimi ve Nanoteknolojide Yüksek Lisans (Disiplinlerarası) (Tezli)
Öğrenim Türü: Örgün Eğitim
Ön Koşullar Yok
Öğrenim Dili: İngilizce
Dersin Düzeyi: Yüksek Lisans
Dersin Koordinatörü: Muhammet Mustafa Çetin
Dersi Veren(ler): Muhammet Mustafa Çetin
Dersin Amacı: 1. Sentez ve retrosentezi anlama
2. Doğal ürünlere ve diğer tıbbi açıdan ilgili organik bileşiklere giden sentetik yolların nasıl tasarlanacağını öğrenme
3. Sentetik planlama için diğer yöntemlerle birlikte retrosentetik analiz, altyapı anahtarlama ve örüntü tanıma yapabilme
4. Asimetrik sentez ve kataliz dahil klasik ve modern organik reaksiyonları tanıtma ve tartışma
5. Sentez ile ilgili önemli konulara aşina olma ve çok çeşitli kimyasal reaksiyonlar hakkında kapsamlı bilgi sahibi olma
6. Sonuç olarak, sağlam fikirlere ve güvenilir dönüşümlere dayalı makul bir sentez planı geliştirebilme
7. Karmaşık hedef sentezinde yer alan strateji ve taktikleri anlama
8. Kimyasal senteze uygulanan modern reaksiyon sınıflarını, sentez tasarımı ve yürütmesinin altında yatan temel ilkelerin derinlemesine tartışılmasıyla birlikte öğrenme
9. Problem çözme, yaratıcı düşünme, yapısal analiz ve yazma teknikleri konusunda deneyim kazanma
10. Organik ve organometalik reaksiyon mekanizmalarını açıklayabilme: deney, teori ve seçilmiş vaka çalışmaları
Dersin İçeriği: Adlandırılmış Reaksiyonlar ve Aşağıdaki Reaksiyonlar Listesinden Seçilen Mekanizmaları:
Alder ene reaction, Aldol condensation, Algar–Flynn–Oyamada reaction, Allan–Robinson reaction, Appel reaction, Arndt–Eistert homologation, Baeyer–Villiger oxidation, Baker–Venkataraman rearrangement, Bamberger rearrangement, Bamford–Stevens reaction, Barbier coupling reaction, Bargellini reaction, Bartoli indole synthesis, Barton radical decarboxylation, Barton–McCombie deoxygenation, Barton nitrite photolysis, Barton–Zard reaction, Batcho–Leimgruber indole synthesis, Baylis–Hillman reaction, Beckmann rearrangement, Beirut reaction, Benzilic acid rearrangement, Benzoin condensation, Bergman cyclization, Biginelli pyrimidone synthesis, Birch reduction, Bischler–Möhlau indole synthesis, Bischler–Napieralski reaction,Blaise reaction, Blanc chloromethylation, Blum aziridine synthesis, Boekelheide reaction, Boger pyridine synthesis, Borch reductive amination, Borsche–Drechsel cyclization, Boulton–Katritzky rearrangement, Bouveault aldehyde synthesis, Bouveault–Blanc reduction, Boyland–Sims oxidation, Bradsher reaction, Brook rearrangement, Brown hydroboration, Bucherer carbazole synthesis, Bucherer reaction, Bucherer–Bergs reaction, Büchner–Curtius–Schlotterbeck reaction, Büchner method of ring expansion, Buchwald–Hartwig C–N bond and C–O bond formation reactions, Burgess dehydrating reagent, Cadiot–Chodkiewicz coupling, Camps quinolinol synthesis, Cannizzaro dispropotionation, Carroll rearrangement, Castro–Stephens coupling, Chan alkyne reduction, Chan–Lam coupling reaction, Chapman rearrangement, Chichibabin pyridine synthesis, Chugaev reaction, Ciamician–Dennsted rearrangement, Claisen condensation, Claisen isoxazole synthesis, Claisen rearrangement (Abnormal Claisen rearrangement, Eschenmoser–Claisen amide acetal rearrangement, Ireland–Claisen (silyl ketene acetal) rearrangement, Johnson–Claisen (orthoester) rearrangement), Clemmensen reduction, Combes quinoline synthesis, Conrad–Limpach reaction, Cope elimination reaction, Cope rearrangement (Oxy-Cope rearrangement, Anionic oxy-Cope rearrangement), Corey–Bakshi–Shibata (CBS) reduction, Corey-Chaykovsky reaction, Corey–Fuchs reaction, Corey–Kim oxidation, Corey–Nicolaou macrolactonization, Corey–Seebach dithiane reaction, Corey–Winter olefin synthesis, Criegee glycol cleavage, Criegee mechanism of ozonolysis, Curtius rearrangement, Dakin oxidation, Dakin–West reaction, Danheiser annulation, Darzens glycidic ester condensation, Davis chiral oxaziridine reagent, Delépine amine synthesis, de Mayo reaction, Demjanov rearrangement (Tiffeneau–Demjanov rearrangement), Dess–Martin oxidation, Dieckmann condensation, Diels–Alder reaction, Di--methane rearrangement, Doebner quinoline synthesis, Dötz reaction, Dowd–Beckwith ring expansion, Erlenmeyer-Plöchl azlactone synthesis, Eschenmoser–Tanabe fragmentation, Eschweiler–Clarke reductive alkylation of amines, Evans aldol reaction, Favorskii rearrangement and quasi-Favorskii rearrangement, Feist–Bénary furan synthesis, Ferrier carbocyclization, Ferrier glycal allylic rearrangement, Fiesselmann thiophene synthesis, Fischer indole synthesis, Fischer oxazole synthesis, Fleming–Tamao oxidation (Tamao-Kumada oxidation), Friedel–Crafts reaction, Friedländer quinoline synthesis, Fries rearrangement, Fukuyama amine synthesis, Fukuyama reduction, Gabriel synthesis (Ing–Manske procedure), Gabriel–Colman rearrangement, Gassman indole synthesis, Gattermann–Koch reaction, Gewald aminothiophene synthesis, Glaser coupling (Eglinton coupling), Gomberg–Bachmann reaction, Gould–Jacobs reaction, Grignard reaction, Grob fragmentation, Guareschi–Thorpe condensation, Hajos–Wiechert reaction, Haller–Bauer reaction, Hantzsch dihydropyridine synthesis, Hantzsch pyrrole synthesis, Heck reaction (Heteroaryl Heck reaction), Hegedus indole synthesis, Hell–Volhard–Zelinsky reaction, Henry nitroaldol reaction, Hinsberg synthesis of thiophene derivatives, Hiyama cross-coupling reaction (Hiyama–Denmark cross-coupling reaction), Hofmann rearrangement, Hofmann–Löffler–Freytag reaction, Horner–Wadsworth–Emmons reaction, Houben–Hoesch synthesis
Hunsdiecker–Borodin reaction, Hurd–Mori 1,2,3-thiadiazole synthesis, Jacobsen–Katsuki epoxidation, Japp–Klingemann hydrazone synthesis, Jones oxidation, Julia–Kocienski olefination, Julia–Lythgoe olefination, Kahne–Crich glycosidation, Keck macrolactonization
Knoevenagel condensation, Knorr pyrazole synthesis (Paal–Knorr pyrrole synthesis), Koch–Haaf carbonylation, Koenig–Knorr glycosidation, Kolbe–Schmitt reaction, Kostanecki reaction, Kröhnke pyridine synthesis, Kumada cross-coupling reaction, Lawesson’s reagent
Leuckart–Wallach reaction, Lossen rearrangement, McFadyen–Stevens reduction, McMurry coupling, MacMillan catalyst, Mannich reaction, Marshall boronate fragmentation, Martin’s sulfurane dehydrating reagent, Masamune–Roush conditions, Meerwein–Ponndorf–Verley reduction, Meisenheimer complex, [1,2]-Meisenheimer rearrangement, [2,3]-Meisenheimer rearrangement, Meth–Cohn quinoline synthesis, Meyers oxazoline method, Meyer–Schuster rearrangement, Michael addition, Michaelis–Arbuzov phosphonate synthesis, Midland reduction, Mislow–Evans rearrangement, Mitsunobu reaction, Miyaura borylation, Moffatt oxidation, Montgomery coupling, Morgan–Walls reaction (Pictet–Hubert reaction), Mori–Ban indole synthesis, Mukaiyama aldol reaction, Mukaiyama Michael addition, Mukaiyama reagent, Myers-Saito cyclization, Nazarov cyclization, Neber rearrangement, Nef reaction, Negishi cross-coupling reaction, Nenitzescu indole synthesis, Nicholas reaction, Nicolaou dehydrogenation, Nicolaou hydroxy-dithioketal cyclization, Nicolaou hydroxy-ketone reductive cyclic ether formation, Nicolaou oxyselenation, Noyori asymmetric hydrogenation, Nozaki–Hiyama–Kishi reaction, Oppenauer oxidation, Overman rearrangement, Paal thiophene synthesis, Paal–Knorr furan synthesis, Parham cyclization, Passerini reaction, Paternó–Büchi reaction, Pauson–Khand cyclopentenone synthesis, Payne rearrangement, Pechmann coumarin synthesis, Perkin reaction, Petasis reaction, Peterson olefination, Pictet–Gams isoquinoline synthesis, Pictet–Spengler tetrahydroisoquinoline synthesis, Pinacol rearrangement, Pinner reaction, Polonovski reaction, Polonovski–Potier rearrangement,
Pomeranz–Fritsch reaction (Schlittler–Müller modification), Prévost trans-dihydroxylation (Woodward cis-dihydroxylation), Prins reaction, Pschorr cyclization, Pummerer rearrangement, Ramberg–Bäcklund reaction, Reformatsky reaction, Regitz diazo synthesis, Reimer–Tiemann reaction, Reissert aldehyde synthesis, Reissert indole synthesis, Ring-closing metathesis, Ritter reaction, Robinson annulation, Robinson–Gabriel synthesis, Robinson–Schöpf reaction, Rosenmund reduction, Rubottom oxidation, Rupe rearrangement, Saegusa oxidation, Sakurai allylation reaction, Sandmeyer reaction, Schiemann reaction, Schmidt reaction, Schmidt’s trichloroacetimidate glycosidation reaction, Shapiro reaction, Sharpless asymmetric amino hydroxylation, Sharpless asymmetric epoxidation, Sharpless asymmetric dihydroxylation, Sharpless olefin synthesis, Simmons–Smith reaction, Skraup quinoline synthesis (Doebner–von Miller reaction), Smiles rearrangement (Newman-Kwart reaction, Truce-Smile rearrangement), Sommelet reaction, Sommelet–Hauser rearrangement, Sonogashira reaction, Staudinger ketene cycloaddition, Staudinger reduction, Sternbach benzodiazepine synthesis, Stetter reaction, Still–Gennari phosphonate reaction, Stille coupling, Stille–Kelly reaction, Stobbe condensation, Stork enamine reaction, Strecker amino acid synthesis, Suzuki coupling, Swern oxidation, Takai iodoalkene synthesis, Tebbe olefination (Petasis alkenylation), TEMPO-mediated oxidation, Thorpe-Ziegler reaction, Tsuji–Trost allylation, Ugi reaction, Ullmann reaction, van Leusen oxazole synthesis, Vilsmeier–Haack reaction, Vilsmeier mechanism for acid chloride formation, Vinylcyclopropane-cyclopentene rearrangement, von Braun reaction, Wacker oxidation, Wagner–Meerwein rearrangement, Weiss–Cook reaction, Wharton oxygen transposition reaction, Willgerodt–Kindler reaction, Wittig reaction (Schlosser modification of the Wittig reaction), [1,2]-Wittig rearrangement, [2,3]-Wittig rearrangement, Wohl–Ziegler reaction, Wolff rearrangement, Wolff–Kishner reduction, Yamaguchi esterification, Zincke reaction
Dersin Öğrenme Çıktıları (ÖÇ):
  • 1- sentez ve retrosentezi anlayabilecek
  • 2- doğal ürünlere ve diğer tıbbi açıdan ilgili organik bileşiklere giden sentetik yolların nasıl tasarlanacağını öğrenebilecek
  • 3- sentetik planlama için diğer yöntemlerle birlikte retrosentetik analiz, altyapı anahtarlama ve örüntü tanıma yapabilecek
  • 4- asimetrik sentez ve kataliz dahil klasik ve modern organik reaksiyonları tanıyabilecek ve tartışabilecek
  • 5- sentez ile ilgili önemli konulara aşina olma ve çok çeşitli kimyasal reaksiyonlar hakkında kapsamlı bilgi sahibi olabilecek
  • 6- sonuç olarak, sağlam fikirlere ve güvenilir dönüşümlere dayalı makul bir sentez planı geliştirebilecek
  • 7- karmaşık hedef sentezinde yer alan strateji ve taktikleri anlayabilecek
  • 8- kimyasal senteze uygulanan modern reaksiyon sınıflarını, sentez tasarımı ve yürütmesinin altında yatan temel ilkelerin derinlemesine tartışılmasıyla birlikte öğrenebilecek
  • 9- problem çözme, yaratıcı düşünme, yapısal analiz ve yazma teknikleri konusunda deneyim kazanabilecek
  • 10- organik ve organometalik reaksiyon mekanizmalarını açıklayabilecek: deney, teori ve seçilmiş vaka çalışmaları
Dersin Öğrenme Yöntem ve Teknikleri Sınıf İçi Anlatım, Etkileşimli Problem Çözme, Ev Ödevi ve Sınavlar, Öğrenci Sunumları, Ara Sınav(lar) ve Final Sınavı


HAFTALIK PROGRAM

HaftaKonularÖn Hazırlık
1 Ders İçeriği Listesinden Seçilmiş Adlandırılmış Reaksiyonlar ve Mekanizmaları Sunum, Problem Setleri, İnteraktif Tartışma, Proje
2 Ders İçeriği Listesinden Seçilmiş Adlandırılmış Reaksiyonlar ve Mekanizmaları Sunum, Problem Setleri, İnteraktif Tartışma, Proje
3 Ders İçeriği Listesinden Seçilmiş Adlandırılmış Reaksiyonlar ve Mekanizmaları Sunum, Problem Setleri, İnteraktif Tartışma, Proje
4 Ders İçeriği Listesinden Seçilmiş Adlandırılmış Reaksiyonlar ve Mekanizmaları Sunum, Problem Setleri, İnteraktif Tartışma, Proje
5 Ders İçeriği Listesinden Seçilmiş Adlandırılmış Reaksiyonlar ve Mekanizmaları Sunum, Problem Setleri, İnteraktif Tartışma, Proje
6 Ders İçeriği Listesinden Seçilmiş Adlandırılmış Reaksiyonlar ve Mekanizmaları Sunum, Problem Setleri, İnteraktif Tartışma, Proje
7 Ders İçeriği Listesinden Seçilmiş Adlandırılmış Reaksiyonlar ve Mekanizmaları Sunum, Problem Setleri, İnteraktif Tartışma, Proje
8 Ders İçeriği Listesinden Seçilmiş Adlandırılmış Reaksiyonlar ve Mekanizmaları Sunum, Problem Setleri, İnteraktif Tartışma, Proje
9 Ders İçeriği Listesinden Seçilmiş Adlandırılmış Reaksiyonlar ve Mekanizmaları Sunum, Problem Setleri, İnteraktif Tartışma, Proje
10 Ders İçeriği Listesinden Seçilmiş Adlandırılmış Reaksiyonlar ve Mekanizmaları Sunum, Problem Setleri, İnteraktif Tartışma, Proje
11 Ders İçeriği Listesinden Seçilmiş Adlandırılmış Reaksiyonlar ve Mekanizmaları Sunum, Problem Setleri, İnteraktif Tartışma, Proje
12 Ders İçeriği Listesinden Seçilmiş Adlandırılmış Reaksiyonlar ve Mekanizmaları Sunum, Problem Setleri, İnteraktif Tartışma, Proje
13 Ders İçeriği Listesinden Seçilmiş Adlandırılmış Reaksiyonlar ve Mekanizmaları Sunum, Problem Setleri, İnteraktif Tartışma, Proje
14 Ders İçeriği Listesinden Seçilmiş Adlandırılmış Reaksiyonlar ve Mekanizmaları Sunum, Problem Setleri, İnteraktif Tartışma, Proje


ZORUNLU ve ÖNERİLEN OKUMALAR

https://www.organic-chemistry.org/namedreactions/
Name Reactions: A Collection of Detailed Reaction Mechanisms, 3rd Expanded Edition; Jie Jack Li; Springer, The Art of Writing Reasonable Organic Reaction Mechanisms by Robert B. Grossman, Springer, 2002
Organic Synthesis: The Disconnection Approach by Stuart Warren, 2nd Edition, Wiley
Protective Groups in Organic Chemistry by P. G. M. Wuts and T. W. Greene, 4th Edition, Wiley
Writing Reaction Mechanisms in Organic Chemistry (Advanced Organic Chemistry Series), 2nd Edition, Philippa H. Solomon, 1999
Mechanisms of Organic Reactions (Oxford Chemistry Primers (45)) 1st Edition, Howard Maskill, 1996
Organic Mechanisms: Reactions, Stereochemistry and Synthesis, Reinhard Bruckner, Michael Harmata (Ed.), Springer-Verlag Berlin Heidelberg, 2010


DİĞER KAYNAKLAR

Advanced Organic Synthesis; Nandkishor S. Chandan; Mahi Publication, 2019
Basic Organic Name Reaction: Multi-component, Reagent, Catalyst; Bhavesh N. Socha, Khushbu K. Dodeja and Yogesh O. Bhola; LAP LAMBERT Academic Publishing, 2020
Basic Mechanism of Organic Name Reactions: Principle, Mechanism and Application; Kushal Nath Mishra and Shambaditya Goswami; Educreation Publishing, 2019


DEĞERLENDİRME SİSTEMİ

Yarıyıl İçi ÇalışmalarıSayıKatkı Payı (%)
Katılım 14 5
Proje 1 10
Ödev 10 30
Sunum/Jüri 1 25
Dersle İlgili Sınıf Dışı Etkinlikler (okuma, bireysel çalışma vb.) 10 -
Final Sınavı 1 30
Total: 37 100


İŞ YÜKÜ HESAPLAMASI

EtkinliklerSayısıSüresi (saat)Toplam İş Yükü (saat)
Ders Saati14342
Proje166
Ödev103.535
Sunum/Jüriye Hazırlık111
Dersle İlgili Sınıf Dışı Etkinlikler1010100
Final Sınavı133
Toplam İş Yükü (saat):187


PROGRAM YETERLİLİKLERİ (PY) ve ÖĞRENME ÇIKTILARI (ÖÇ) İLİŞKİSİ

# PY1 PY2 PY3 PY4 PY5 PY6 PY7 PY8
OC1 1         3    
OC2 2         3    
OC3 2         3    
OC4 2         3    
OC5 2         3    
OC6 3         3    
OC7 2         3    
OC8 2   2     3 3 3
OC9 3   2     3 3 3
OC10 3   2     3 3 3